Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Biopreserv Biobank ; 2022 Jun 30.
Article in English | MEDLINE | ID: covidwho-2296460

ABSTRACT

Biobanking during the COVID-19 pandemic presented unique challenges regarding patient enrollment, sample collection, and experimental analysis. This report details the ways in which we rapidly overcame those challenges to create a robust database of clinical information and patient samples while maintaining clinician and researcher safety. We developed a pipeline using REDCap (Research Electronic Data Capture) to coordinate electronic informed consent, sample collection, immunological assay execution, and data analysis for biobanking samples from patients with COVID-19. We then integrated immunological assay data with clinical data extracted from the electronic health record to link study parameters with clinical readouts. Of the 193 inpatients who participated in this study, 138 consented electronically and 56 provided paper consent. We collected and banked blood samples to measure circulating cytokines and chemokines, peripheral immune cell composition and activation status, anti-COVID-19 antibodies, and germline gene polymorphisms. In addition, we collected DNA and RNA from nasopharyngeal swabs to assess viral titer and microbiome composition by 16S sequencing. The rapid spread and contagious nature of COVID-19 required special considerations and innovative solutions to biobank samples quickly while protecting researchers and clinicians. Overall, this workflow and computational pipeline allowed for comprehensive immune profiling of 193 inpatients infected with COVID-19, as well as 89 outpatients, 157 patients receiving curbside COVID-19 testing, and 86 healthy controls. We describe a novel electronic framework for biobanking and analyzing patient samples during COVID-19, and present insights and strategies that can be applied more broadly to other biobank studies.

2.
Sci Adv ; 8(40): eabn3777, 2022 10 07.
Article in English | MEDLINE | ID: covidwho-2063966

ABSTRACT

Patients infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can experience life-threatening respiratory distress, blood pressure dysregulation, and thrombosis. This is thought to be associated with an impaired activity of angiotensin-converting enzyme 2 (ACE2), which is the main entry receptor of SARS-CoV-2 and which also tightly regulates blood pressure by converting the vasoconstrictive peptide angiotensin II (AngII) to a vasopressor peptide. Here, we show that a significant proportion of hospitalized patients with COVID-19 developed autoantibodies against AngII, whose presence correlates with lower blood oxygenation, blood pressure dysregulation, and overall higher disease severity. Anti-AngII antibodies can develop upon specific immune reaction to the SARS-CoV-2 proteins Spike or receptor-binding domain (RBD), to which they can cross-bind, suggesting some epitope mimicry between AngII and Spike/RBD. These results provide important insights on how an immune reaction against SARS-CoV-2 can impair blood pressure regulation.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Angiotensin II , Autoantibodies , Blood Pressure , Epitopes/metabolism , Humans , Peptidyl-Dipeptidase A/metabolism , Protein Binding , SARS-CoV-2 , Severity of Illness Index , Spike Glycoprotein, Coronavirus
3.
Sci Rep ; 11(1): 12425, 2021 06 14.
Article in English | MEDLINE | ID: covidwho-1268002

ABSTRACT

Saliva has significant advantages as a test medium for detection of SARS-CoV-2 infection in patients, such as ease of collection, minimal requirement of supplies and trained personnel, and safety. Comprehensive validation in a large cohort of prospectively collected specimens with unknown SARS-CoV-2 status should be performed to evaluate the potential and limitations of saliva-based testing. We developed a saliva-based testing pipeline for detection of SARS-CoV-2 nucleic acids using real-time reverse transcription PCR (RT-PCR) and droplet digital PCR (ddPCR) readouts, and measured samples from 137 outpatients tested at a curbside testing facility and 29 inpatients hospitalized for COVID-19. These measurements were compared to the nasal swab results for each patient performed by a certified microbiology laboratory. We found that our saliva testing positively detects 100% (RT-PCR) and 93.75% (ddPCR) of curbside patients that were identified as SARS-CoV-2 positive by the Emergency Use Authorization (EUA) certified nasal swab testing assay. Quantification of viral loads by ddPCR revealed an extremely wide range, with 1 million-fold difference between individual patients. Our results demonstrate for both community screening and hospital settings that saliva testing reliability is on par with that of the nasal swabs in detecting infected cases, and has potential for higher sensitivity when combined with ddPCR in detecting low-abundance viral loads that evade traditional testing methods.


Subject(s)
COVID-19/diagnosis , SARS-CoV-2/genetics , Saliva/virology , Adult , COVID-19/virology , Female , Humans , Male , Middle Aged , RNA, Viral/analysis , RNA, Viral/genetics , RNA, Viral/metabolism , Reagent Kits, Diagnostic , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/isolation & purification , Viral Load
4.
Clin Pharmacol Ther ; 109(3): 688-696, 2021 03.
Article in English | MEDLINE | ID: covidwho-969508

ABSTRACT

Interleukin-6 (IL-6)-mediated hyperinflammation may contribute to the mortality of coronavirus disease 2019 (COVID-19). The IL-6 receptor-blocking monoclonal antibody tocilizumab has been repurposed for COVID-19, but prospective trials and dose-finding studies in COVID-19 have not yet fully reported. We conducted a single-arm phase II trial of low-dose tocilizumab in nonintubated hospitalized adult patients with COVID-19, radiographic pulmonary infiltrate, fever, and C-reactive protein (CRP) ≥ 40 mg/L. We hypothesized that doses significantly lower than the emerging standards of 400 mg or 8 mg/kg would resolve clinical and laboratory indicators of hyperinflammation. A dose range from 40 to 200 mg was evaluated, with allowance for one repeat dose at 24 to 48 hours. The primary objective was to assess the relationship of dose to fever resolution and CRP response. Thirty-two patients received low-dose tocilizumab, with the majority experiencing fever resolution (75%) and CRP decline consistent with IL-6 pathway abrogation (86%) in the 24-48 hours following drug administration. There was no evidence of a relationship between dose and fever resolution or CRP decline over the dose range of 40-200 mg. Within the 28-day follow-up, 5 (16%) patients died. For patients who recovered, median time to clinical recovery was 3 days (interquartile range, 2-5). Clinically presumed and/or cultured bacterial superinfections were reported in 5 (16%) patients. Low-dose tocilizumab was associated with rapid improvement in clinical and laboratory measures of hyperinflammation in hospitalized patients with COVID-19. Results of this trial provide rationale for a randomized, controlled trial of low-dose tocilizumab in COVID-19.


Subject(s)
Antibodies, Monoclonal, Humanized , C-Reactive Protein/analysis , COVID-19 Drug Treatment , COVID-19 , Fever , Pneumonia, Viral , Aged , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/adverse effects , Anti-Inflammatory Agents/pharmacology , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/pharmacokinetics , COVID-19/blood , COVID-19/physiopathology , Dose-Response Relationship, Drug , Drug Monitoring/methods , Female , Fever/diagnosis , Fever/drug therapy , Humans , Male , Pneumonia, Viral/diagnosis , Pneumonia, Viral/drug therapy , Pneumonia, Viral/etiology , Receptors, Interleukin-6/antagonists & inhibitors , SARS-CoV-2/isolation & purification , Severity of Illness Index , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL